A Four Dimensional Approach to

The track of understanding renal physiology takes us through a convoluted journey

Carbohydrate chain chain

A EUKARYOTIC ANIMAL CELL CELL MEMBRANE MITOCHONDRION VESICLE CELL NUCLEUS NUCLEAR PORE NUCLEOLUS ENDOPLASMIC RETICULUM **GOLGI APPARATUS**

Electrolytes are charged particles (ions) that are dissolved in body fluids.

Electrolytes (Dissolved Ions)

Intracellular Milieu

High Potassium High Protein High Magnesium High Phosphate

Very low sodium and chloride Very low bicarbonate PROFOUNDLY low calcium

The Inside of the Cell is a Protein rich, high potassium, high phosphate, and high magnesium environment

...this is where the processes of creating energy and life take place!! The Outside of the Cell is the Salt of the Sea from which Life Sprang Forth

...bathing the cells in the liquid from which they were born

Body Fluid Compartments

Total Body Water	Body Weight (%)	Total Body Water (%)
Total	60	100
Intracellular	40	67
Extracellular	20	33
Intravascular	5	8
Interstitial	15	25

Body Fluid Compartments

Age	Total Body Water As % Body Weight	Extracellular Fluid As % Body Weight	Intracellular Fluid As % Body Weight
Premature	75 - 80	50	35
Newborn	70 – 75	50	35
1 Year Old	65	25	40 – 45
Adolescent Male	60	20	40 – 45
Adolescent Female	55	18	40

Electrolyte Concentration in Fluid Compartments (meq/L)			
	Plasma	Interstitial Fluid	Intracellular Fluid
Cations			
Na⁺	140	146	12
K ⁺	4	4	150
Ca ²⁺	5	3	10 ⁻⁷

Electrolyte Concentration in Fluid Compartments (meq/L)			
	Plasma	Interstitial Fluid	Intracellular Fluid
Anions			
Cl	103	114	3
HCO ₃ ⁻	24	27	10
SO4 ²⁻	1	1	
HPO ₄ ³⁻	2	2	116
Protein	16	5	40
Organic anions	5	5	

Water is constantly being lost

Urine Feces Sweat Spit (south Georgia)

Exercise, fever, vomiting, diarrhea NG suction, other tubes...

All remove volume from the body, initially from the circulating vascular volume, then from the interstitium and cells

<u>Water Losses</u> in a 60 – 80 Kg Man			
	Average Daily Volume (mL)	Minimal Daily Volume (mL)	
Sensible Losses			
Urinary	800 - 1500	300	
Intestinal	0 - 250	0	
Sweat	0	0	
Insensible Losses			
Lungs and Skin	600 – 900	600 - 900	

The nephron leaks out 180 liters/day

...that is 60 normal adul plasma volu

We literally pour out our entire PLASMA VOLUME every 30 minutes

...that's a powerful organ!

Yet, the "beans" reabsorb some 99% of this volume

...that is some refining power

With a GFR of 120 ml/min (180 L/day) 25,000 mEq of sodium (about half a kilogram are filtered out per d almost all of which are reabsorbed collecting tubule

A "Trip through the Tubules"

Tubular fluid is iso-osmolar in the proximal tubu

The Renal Medulla is **XCEEDLINGLY** concentrated and highly osmotically concentrated

C

medulla

a nephron

cortex

...2 – 4 times the osmolarity of the filtrate Water, then, is reabsorbed in the descending loop of Henle

In the ascending loop, giomerular-capsular membrane Na / K / Cl are Bow man's alomerulus capsule >> glomerular filtrate reabsorbed reabsorption filtration ...this portion is proximal etion impermeable to collecting distal tubule tubule tubule water, even with $\uparrow \uparrow ADH$ loop of Henle

peritubular capillaries Tubular fluid becomes more dilute as it flow up the ascending loop

...osmolarity of 100 mOsm/L

In the Distal Tubules and **Collecting Duct** fluid may becon even more dilut due to additiona secret collecting reabsorption of NaCl

...impermeable to water in ABSENCE of ADH (osmolarity \ to 50 mOsm/L

Urine Sodium is the *"signal"* of what the body is trying to do

... unless the kidneys are failing

Look at the BODY... ...then look at the SIGNAL!

Look at Hydration and Hemodynamic Status ...and then look at the fluid being eliminated

How effective is the SIGNAL?

We can excrete as little as 1 meq Na⁺ per day

... or as much as 5000 meg Na^+

How effective is the SIGNAL?

We can dilute urine to as little as 50 mOsm/L of solute in 300 cc urine

...or concentrate as much as 1400 mOsm/L It's what 2 million nephrons with multiple hormal signals will do for you

...and, it's what an organ that processes 36 times your blood volume per day can do The renal excretion of water is independent of solute excretion

> ...the primary effector or water excretion is ADH (vasopressin)

When Osmolarity is greater than normal, the posterior pituitary secretes ADH

...increases permeability of the distal tubules and collecting ducts to water When Osmolarity is greater than normal, the posterior pituitary secretes ADH

* Water absorption
Urine volume
Does not markedly alter rate of renal excretion of solute

When Osmolarity is less than normal, the posterior pituitary secretes less ADH

...reduces the permeability of distal tubules and collecting ducts to H₂O

...with urine concentration falling from 600 mOsm/L to 100 mOsm/L

The kidneys can concentrate the urine to 1400 mOsm/L

...desert animals can concentrate urine to 10,000 mOsm/L, surviving in the desert without drinking water, getting water only from food

Sea water has 2400 mOsm/L ...but the lowly Australian hopping mouse can excrete the salt load in a liter of sea water in 200 cc of urine and could thus drink sea water with impunity

A normal human excretes 600 mOsm of solute per day ... if maximum concentrating ability is 1200 – 1400 mOsm/L, then: 600/1200 = 0.5 L/dayminimal urine volume to excrete normal solute waste

Electrolyte Requirements

Sodium – 1.0 – 1.5 mEq/Kg (43.4 mEq/gram)

Potassium – 0.5 – 0.75 mEq/Kg (~ ½ Sodium)

Chloride - 1.0 – 1.5 mEq/KG

Common IV Solutions								
Solution	Glucose (g/L)	Na⁺	K⁺	Ca ²⁺	Cl	Lactate	PO4 ³⁻	Mg ²⁺
5% Dextrose (D5W)	50	0	0	0	0	0	0	0
10% Dextrose (D10W)	100	0	0	0	0	0	0	0
Normal Saline (NS)	0	154	0	0	154	0	0	0
D5NS	50	154	0	0	154	0	0	0
D5 ½ NS	50	77	0	0	77	0	0	0
0.2% NS	0	31	0	0	31	0	0	0
3% NaCl	0	513	0	0	513	0	0	0
Ringer's Lactate (RL)	0	130	4	3	109	28	0	0
D5 RL	50	130	4	3	109	28	0	0

Urine Sodium is the Sign of what the body is trying to do ...unless the kidneys are failing...

Fractional excretion of sodium

The fraction of sodium actually excreted by the body relative to the amount filtered by the kidney.

Fractional excretion of sodium

Fena U_{Na} / P_{Na} U_{Cr} / P_{Cr}

Fractional excretion of sodium

FE_{Na} should be 1% - 3%.
 Anything higher than 3% indicates impaired tubular function.

Diuretics <u>MAY</u> elevate this number

Acute Renal Failure

Acute Renal Failure:

- Definition
- Acute Renal Failure vs.
 Chronic Renal Failure
- Etiology
- Pre-renal causes
- Intrinsic Renal Diseases
- Acute Tubular Necrosis
- Presentation of Renal Failure
- Evaluation of the Patient
- Management

Acute Renal Failure:

Definition:

a. A sudden/severe decline in renal function resulting in accumulation of nitrogenous waste products b. On a continuum with azotemia and renal insufficiency c. May be accompanied by severe metabolic derangements - metabolic acidosis, volume overload, and hyperkalemia

Acute vs. Chronic Renal Failure

a. Requires review of past history, records or labs

b. Important because aim in ARF is to reverse RF, aim in CRF is to treat complications
c. Consider that ARF may be superimposed on CRF

Type of ARF	Examples		
Prerenal Azotemia	 Hypovolemia Hypoalbuminemia Heart Failure Hypotension Renal artery/vein disease 		
Intrinsic Renal Disease Vascular	•Vasculitis •Scleroderma •Malignant HTN		
Glomerular	•Glomerulonephritis •SLE •Goodpasture's		
Interstitial	•Drugs •Toxins •Infections		
Acute Tubular Necrosis	 Post Ischemia (post Prerenal) Myoglobinuria/hemoglobinuria Toxins (iodine contrast, aminoglycosides) 		
Post Renal Obstruction	 Extrarenal (tumor, neurogenic, urethral calculi or stricture) Intrarenal – bilateral or affecting single functioning kidney (calculi, tumor, papillary necrosis 		

Prerenal causes – Due to low blood flow to the kidney

a. Systemic Diseaseb. Renal Artery/Vein Disease

Acute Renal Failure: Systemic Disease a. Hypovolemia b. Hypotension

- c. Third spacing of fluids
- d. Congestive heart failure
- e. Hypoalbuminemia cirrhosis, nephrotic syndrome

<u>Renal Artery/Vein Disease</u> (some classify as *Intrinsic Renal Disease*)

a. Decreased blood flow

- (1) ACE inhibitors in the setting of bilateral renal artery stenosis
- (2) Prostaglandin Inhibitors NSAID's
 - and ASA cause renal artery constriction

 Artery obstruction (disease must be bilateral or affect the single functioning kidney)

(1) Trauma

- (2) Aortic Aneurysm/Dissection
- (3) Tumor compression
- (4) Thromboembolic Disease

Intrinsic Renal Disease – 5-10% of ARF in adults, 40-60% of ARF in pediatrics

a. Vascular

- (1) Malignant Hypertension
- (2) Scleroderma
- (3) TTP/Hemolytic Uremic Syndrome (HUS)

Intrinsic Renal Disease – 5-10% of ARF in adults, 40-60% of ARF in pediatrics

b. Glomerular

- (1) Systemic Vasculitis (polyarteritis, Wegener's, HSP)
- (2) Goodpasture's Syndrome
- (3) SLE
- (4) Glomerulonephritis (Immune complex, post-strep,
 - and rapidly progressive glomerular nephritis)

Acute Renal Failure: Intrinsic Renal Disease – 5-10% of ARF in adults, 40-60% of ARF in pediatrics c. Interstitial (1) Drugs – probably immune related, not dose dependent, reoccurs with repeat exposure a. Penicillins **b.** Diuretics c. NSAIDS (2) Toxins a. Heavy Metals b. Ethylene Glycol (3) Infections – probably immune related a. Bacterial b. Rickettsia

<u>Acute Tubular Necrosis</u> – most common cause of ARF in adults

1. Post – Ischemic

Most commonly results from severe pre-renal azotemia

2. Nephrotoxins

- a. Antibiotics aminoglycosides
- b. NSAIDS
- c. lodine contrast
- d. Myoglobinuria
- e. Hemoglobinuria
- 3. Exclude pre-renal, post-renal, and instrinsic disease if ARF continues despite treatment

Presentation of Acute Renal Failure: <u>No particular clinical presentation is</u> <u>unique to Acute Renal Failure</u>

- 1. Volume Status
 - Hypovolemic
 - Euvolemic
 - Volume overload

2. Azotemia

- a. Asymptomatic only apparent on blood test
- b. Uremic Syndromes
 - (1) Altered mental status
 - (2) Pericardial disease
 - (3) Pruritis
 - (4) Nausea/vomiting

3. Metabolic

- a. Hyperkalemia dysrhythmias
- b. Metabolic acidosis
- c. Hyponatremia
- d. Hypocalcemia
 - (1) Usually asymptomatic
 - (2) May result in tetany after bicarb given
- e. Hyperphosphatemia
- f. Hypermagnesemia

4. Hematologic

a. Anemia – if renal disease is long-standing
b. Thrombocytopenia
c. GI bleeding from bleeding diathesis

5. Active Urinary Sediment

a. Red cell casts suggest glomerulonephritis
b. Azotemia in the setting of a normal urinalysis suggests obstruction

Evaluation of the Patient with Acute Renal Failure:

1. Volume Status!!!!

- 2. Physical Exam distended bladder, pelvic tumor/mass, prostate
- 3. Uremic Syndrome?
- 4. Exposure to Toxins?
- Search for pre-renal and post-renal disease – these are typically reversible
 Laboratory Results

Test	Pre-renal	Renal	Acute Tubular Necrosis	Post-renal
Urine Sodium (mEq/L)	<20	>40		
Fract Excret of sodium (%)*	<1	>2		

Urine Sodium is Usually Pretty Low!

<u>Thus, a measurement of a HIGH urine Na+</u> <u>suggests that the kidneys are</u> "wasting salt"

	granular casts	WBC casts	pigmented cellular casts	casts
Kidney size	Normal	Normal	Normal	Increased
Radionuclide Study	Poor uptake Delayed excretion	Good uptake Delayed excretion	Variable	Good uptake No excretion

Burton D. Rose, MD

Nephrologist Boston, MA "Up to Date" 1998

<u>"Urine sodium concentration</u> — The urine sodium concentration tends to be low in prerenal disease (<20 meq/L) in an appropriate attempt to conserve sodium, and high in ATN (>40 meg/L) due in part to the tubular injury. There is, however, frequent overlap resulting in many cases from variations in water reabsorption which can also affect the urine sodium concentration. As an example, a prerenal patient who is highly water-avid due to increased secretion of antidiuretic hormone may have a higher than expected urine sodium concentration despite excreting relatively little sodium. Conversely, decreased water reabsorption in ATN can lower the urine sodium by dilution. The net effect is that the fractional excretion of sodium (FENa) is a better test, because it evaluates only sodium handling (the fraction of the filtered sodium that is excreted) and is not affected by changes in water reabsorption."

Remember folks!!

Potassium rises 0.6 mEq/L for every decrease of 0.1 pH on the ABG. So, even if the potassium is 6.4, if the pH is 7.00, then the patient has a corrected K+ of 4.0.

> (5)Lasix (6)Albuterol

- 1. Treat Complications
 - b. Volume Overload
 - c. Hypocalcemia
 - (1)May be precipitated by Bicarb(2)Tetany calcium gluconate
 - d. Hypermagnesemia
 (1)Avoid extra magnesium in antacids or laxatives

- 1. Treat Complications
 - e. Hyperphosphatemia
 - (1)Limit phosphate in diet
 - (2)Use phosphate absorbing antacids
 - f. Pericarditis
 - In ARF, is indication for urgent dialysis
 - g. Correct bleeding diathesis/platelet abn.
 (1)Cryoprecipitate
 (2)DDAVP (raises Factor VIII four-fold)

- 2. Pre-renal improve blood flow to kidney
 - a. Replace volume
 - b. Dopamine
 - c. Relieve compromised blood flow

 (1) Renal artery stenosis and
 ACE inhibitor
 (2) Trauma/tumor

 Hyperkalemia Volume Overload, with cardiopulmonary compromise Acidosis •Hypertension, severe and uncontrolled •Drug toxicity – salicylate, lithium, theophylline (charcoal hemoperfusion preferred), methanol, ethylene glycol •Possible Indications: Pericarditis, progressive altered mental status from uremia b. Transfer, if nephrologist or dialysis

unavailable

<u>Glomerulonephritis</u>

- 1. Syndrome of hematuria, proteinuria
- 2. Immune mediated inflam. of glomerulus
- 3. Post-streptococcal most common in childhood
- 4. Presentation
 - a. Edema
 - b. Hematuria
 - c. Hypertension
 - d. ARF
- 5. Management
 - a. Most admitted =>> Definitely consult!
 - b. Manage complications of ARF

MANAGING COMPLICATIONS

OF ARF

- Hyperkalemia
- Volume Overload
 - Hypocalcemia
- Hypermagnesemia
- Hyperphosphatemia
 - Pericarditis
- Pre-renal (Replace volume, dopamine,
 - Relieve compromised blood flow)
 - Renal
 - Post Renal Relieve obstruction
- Encourage Urine Flow (Mannitol, Lasix)
 - Possible need for Dialysis

Acute Renal Failure: Nephrotic Syndrome

- 1. Syndrome of proteinuria, hypoalbuminemia, edema, hyperlipidemia
- 2. Glomerular disease causing protein leaking
- 3. Peak: Ages 2-7 years minimal change nephrotic syndrome most common
- 4. Clinical Presentation
 - a. Edema
 - b. Hematuria and hypertension unusual
- 5. Management
 - a. Most admitted definitely consult
 - b. Manage complications of ARF
 - c. Lasix is diuretic of choice

Chronic Renal Failure

- Irreversible renal function loss
 Kidneys usually small and scarred
 GFR > 25% normally tolerated well
 GFR < 25% caused end-stage renal disease
 Evaluation is centered around ruling ARF and ARF superimposed on CRF
 Treatment

 Dialysis
 - b. Transplant

- 1. Vascular Access
 - a. Fistula is vein redirected, vs. graft is artificial
 - b. No blood draw, tourniquet or BP in extremity with shunt
 - c. In life-threatening emergency, can access shunt:
 - (1) Sterile technique
 - (2) DO NOT PUNCTURE BACK WALL
 - (3) Will need pump for IV fluid
 - (4) Use non-occlusive pressure to halt bleeding

- 1. Vascular Access
 - d. Shunt thrombosis loss of thrill, then consult vascular surgeon: Some are using thrombolytics
 - e. Shunt infection
 - (1) Red, warm, tender
 (2) IV antibiotics to cover skin flora
 (3) Likoly admission
 - (3) Likely admission

- 2. Bleeding Platelet dysfunction and/or heparin complications
- 3. Hypotension must search for cause a. MI
 - **b.** Pericardial Tamponade
 - (1) Due to bleeding
 - (2) Symptomatic with volume reduction
 - c. Sepsis
 - d. Bleeding secondary to anticoagulation
 - e. Excessive fluid removal

- 4. Hypokalemia
 - a. Only occurs during dialysis
 - b. Causes ventricular irritability
 - c. With Ventricular fibrillation during dialysis, think about hypokalemia
 - d. Digitalis toxicity may be precipitated by hypokalemia from dialysis

5. Disequilibrium syndrome a. Due to rapid change in osmolality b. More common during first dialysis session c. Nausea, vomiting, headache d. Altered mental status, seizure may occur e. Treatment – infuse osmotically active substance f. Consider other causes of CHS dysfunction, especially in previously stable dialysis patient

Synthesis 4

The understanding of renal physiology connects us directly to the evolution of the universe

As with ALL subjects in science, if you don't give this connection a REGULAR **CONSIDERATION...**

and good morning!

